smooth example 00000 polarizations 0000 fibrations by Pryms

dual fibrations

Lagrangian fibrations Part II : six dimensions

Justin Sawon¹

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Seminar Algebraic Geometry MPIM Bonn, Germany May 4, 2023

¹Supported by NSF awards DMS-1555206 and DMS=2152130. ≣ → < ≣ → ○ < ?

smooth example

polarizations

fibrations by Pryms

dual fibrations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- generalities on Lagrangian fibrations
- smooth holomorphic symplectic sixfolds
- polarization types
- fibrations by Prym varieties
- dual fibrations

Joint work with Chen Shen, PhD 2020 (on ProQuest).

mooth example

polarizations

fibrations by Pryms

dual fibrations

Holomorphic symplectic manifolds

Let X be a compact Kähler manifold with $c_1 = 0$.

Thm (Bogomolov): \exists finite étale cover \tilde{X} of X with

$$\tilde{X} = T \times \prod_{i} CY_{i} \times \prod_{j} IHS_{j},$$

T =torus, $CY_i =$ (strict) Calabi-Yau manifolds, and $IHS_j = ...$

Def: A compact Kähler manifold X is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form σ . In addition if $\pi_1(X) = 0$ and $\mathrm{H}^0(\Omega^2)$ is generated by σ then we say X is an *irreducible holomorphic symplectic (IHS) manifold*. $\begin{array}{c} \text{Lagrangian fibrations} \\ 0 \bullet 0 0 \end{array}$

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

Examples of IHS manifolds

- **1.** Hilbert schemes of points on K3 surfaces, $\operatorname{Hilb}^{n}S \to \operatorname{Sym}^{n}S$.
- **2.** Generalized Kummer varieties, $\operatorname{Hilb}^{n+1}A = A \times K_n(A)$. Equivalently $K_n(A) := \operatorname{kernel}(\operatorname{Hilb}^{n+1}A \longrightarrow \operatorname{Sym}^{n+1}A \longrightarrow A)$.
- 3. Mukai moduli spaces of stable sheaves on K3/abelian surfaces.

$$\mathrm{Ext}^{1}(\mathcal{E},\mathcal{E})\times\mathrm{Ext}^{1}(\mathcal{E},\mathcal{E})\to\mathrm{Ext}^{2}(\mathcal{E},\mathcal{E})\overset{\mathrm{tr}}{\longrightarrow}\mathrm{H}^{2}(\mathcal{O})\cong\mathbb{C}$$

4. O'Grady's spaces, OG6 and OG10.

Three examples known in dimension six: Hilb³S, $K_3(A)$, and OG6.

 $\begin{array}{c} \text{Lagrangian fibrations} \\ \text{OO} \bullet \text{O} \end{array}$

smooth example

polarizations

fibrations by Pryms

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Fibrations

Let X be an IHS manifold of dimension 2n.

Thm (Matsushita): If $X \rightarrow B$ is a proper fibration then

- 1. $\dim B = n = \dim F$,
- 2. F is Lagrangian wrt the holomorphic symplectic form σ ,
- 3. generic fibre is a complex torus.

Rmk: Lagrangian means $TF \subset TX$ is maximal isotropic wrt σ . Integrable means $T^*B \subset T^*X$ is maximal isotropic wrt σ^{-1} . Thus Lagrangian fibrations are equivalent to integrable systems.

Thm (Hwang): B is isomorphic to \mathbb{P}^n if it is smooth.

Rmk: Hodge theory \implies general fibre is an abelian variety.

 $\begin{array}{c} \text{Lagrangian fibrations} \\ \text{OOO} \bullet \end{array}$

smooth example 00000 polarizations

fibrations by Pryms 00000000 dual fibrations

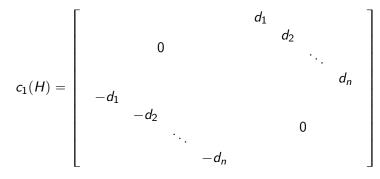
3

Polarizations of abelian varieties

A polarization H of an abelian variety gives

$$c_1(H) \in \mathrm{H}^2(A, \mathbb{Z}) = \Lambda^2 \mathrm{H}_1(A, \mathbb{Z})^*.$$

With respect to a standard basis



with $d_1|d_2|\cdots|d_n$. We call this the *type* of the polarization.

smooth examples

polarizations

fibrations by Pryms

dual fibrations

Examples for HilbⁿS

1. If $S \longrightarrow \mathbb{P}^1$ is an elliptic K3 surface then the Hilbert scheme

$$\operatorname{Hilb}^{n} S \to \operatorname{Sym}^{n} S \to \operatorname{Sym}^{n} \mathbb{P}^{1} = \mathbb{P}^{n}$$

is a Lagrangian fibration. Its fibres look like

$$E_1 \times E_2 \times \cdots \times E_n$$
.

2. Beauville-Mukai system: Let *C* be a genus *n* curve in a K3 surface *S*, with $|C| \cong \mathbb{P}^n$ and C/\mathbb{P}^n the family of curves linearly equivalent to *C*.

$$X:=\overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^n)\longrightarrow \mathbb{P}^n$$

is a Lagrangian fibration, deformation equivalent to $\operatorname{Hilb}^{n} S$.

Or $X \cong$ moduli space M(0, [C], 1 - g + d) of stable sheaves on S.

smooth examples

polarizations

fibrations by Pryms

dual fibrations

Examples for $K_n(A)$

- **3.** Isotrivial system: If $A = E \times F$ then
 - $\operatorname{Hilb}^{n+1} A \longrightarrow \operatorname{Sym}^{n+1} A \longrightarrow \operatorname{Sym}^{n+1} E \cong J^{n+1} E \times \mathbb{P}^n \cong E \times \mathbb{P}^n$

induces a Lagrangian fibration $K_n(A) \longrightarrow \mathbb{P}^n$ with smooth fibres

$$\cong \{(f_0, f_1, \dots, f_n) \in F^{n+1} \mid f_0 + f_1 + \dots + f_n = 0 \text{ in } F\}.$$

Rmk: This fibre is complementary to

$$\Delta: F \cong \{(f, f, \dots, f) \mid f \in F\} \longrightarrow F^{n+1}$$

and therefore has polarization type $(1, 1, \ldots, 1, n+1)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

smooth examples

polarizations

fibrations by Pryms

dual fibrations

Examples for $K_n(A)$

4. Debarre system: Let $C \subset A$ give a polarization of type (1, n+1). Then C has genus n+2 and $|C| \cong \mathbb{P}^n$. Let C/\mathbb{P}^n be the family of curves linearly equivalent to C and

$$Y:=\overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^n)\longrightarrow \mathbb{P}^n.$$

Or $Y \cong$ moduli space M(0, [C], d - n - 1) of stable sheaves on A. Then

$$X := \mathsf{kernel}(\mathsf{Alb}: Y \longrightarrow A)$$

is a Lagrangian fibration with fibres

$$X_t = \operatorname{kernel}(\overline{\operatorname{Jac}}^d C_t \longrightarrow A).$$

Rmk: Polarization type of the fibres is (1, 1, ..., 1, n + 1).

smooth examples

polarizations

fibrations by Pryms 00000000 dual fibrations

Examples for $K_n(A)$ and OG6

5. Debarre system/OG6: Let $C \subset A$ give a polarization of type (2, 2). Then C has genus 5 and $|C| \cong \mathbb{P}^3$. Consider

$$Y:=\overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^3)\longrightarrow \mathbb{P}^3,$$

i.e., $Y \cong M(0, [C], d - 4)$ on A, and $X := \text{kernel}(\text{Alb} : Y \longrightarrow A)$.

- If d is odd then X is deformation equivalent to $K_3(A)$,
- If d is even then \widetilde{X} is deformation equivalent to OG6.

Rmk: Both cases have fibres of polarization type (1, 2, 2).

smooth examples

polarizations 0000 fibrations by Pryms 00000000 dual fibrations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary of six-dimensional examples

Example	Polarization type	
${ m Hilb}^3$ of elliptic K3	(1, 1, 1)	
Beauville-Mukai system	(1,1,1)	
Isotrivial system on $K_3(A)$	(1, 1, 4)	
Debarre system for $A^{1,4}$	(1, 1, 4)	
Debarre system for $A^{2,2}$	(1, 2, 2)	
O'Grady 6 on $A^{2,2}$	(1,2,2)	

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An invariant of Lagrangian fibrations

Thm (Wieneck): In a family of Lagrangian fibrations the polarization type of the fibres is constant.

For fibrations on $Hilb^n K3$ the polarization is *principal*

 $(d_1, d_2, \ldots, d_n) = (1, 1, \ldots, 1).$

For fibrations on $K_n(A)$ the polarization is of type

$$(d_1,\ldots,d_{n-1},d_n)=(1,\ldots,1,d_{n-1},d_n)$$

with $d_{n-1}d_n = n + 1$.

Thm (Markman): Every Lagrangian fibration on $Hilb^n K3$ is a Beauville-Mukai system, up to a *Tate-Shafarevich twist*.

smooth exampl 00000 polarizations

fibrations by Pryms

dual fibrations

Fibrations by Jacobians

Thm (S-): Let C/\mathbb{P}^3 be a flat family of reduced curves of genus 3 such that $X = \overline{\text{Jac}}^d(C/\mathbb{P}^3)$ is a Lagrangian fibration. If the curves

are irreducible Gorenstein non-hyperelliptic, or

• are canonically positive 2-connected hyperelliptic,

then X/\mathbb{P}^3 must be a Beauville-Mukai integrable system.

Rmk: The general principally polarized abelian threefold is the Jacobian of a (non-hyperelliptic) curve of genus three.

Qu: If the general fibre of X/\mathbb{P}^3 is the product $E_1 \times E_2 \times E_3$ of elliptic curves, must X be Hilb³ of an elliptic K3?

smooth exampl 00000 polarizations

fibrations by Pryms

dual fibrations

Fibrations by Jacobians

Proof (in the non-hyperelliptic case): The relative canonical embedding gives

$$\mathcal{C} \to \mathbb{P}(R^1\pi_*\mathcal{O}_{\mathcal{C}}) = \mathbb{P}(R^1\pi_*\mathcal{O}_X) = \mathbb{P}(\Omega^1_{\mathbb{P}^3}) \subset \mathbb{P}^3 \times (\mathbb{P}^3)^{\vee}.$$

Indeed \mathcal{C} is the zero locus in $\mathbb{P}(\Omega^1_{\mathbb{P}^3})$ of a section of

$$\mathcal{O}_{\mathbb{P}(\Omega^1)}(4)\otimes\pi^*\mathcal{O}_{\mathbb{P}^3}(k)=\mathcal{O}(k+4,4)|_{\mathbb{P}(\Omega^1)}$$

Now $R^1\pi_*\mathcal{O}_{\mathcal{C}}=\Omega^1_{\mathbb{P}^3}$ determines k=-4, so

$$\mathcal{O}(k+4,4)|_{\mathbb{P}(\Omega^1)} = \mathcal{O}(0,4)|_{\mathbb{P}(\Omega^1)}$$

is pulled back from $(\mathbb{P}^3)^{\vee}$. This means the curves are hyperplane sections of a quartic K3 surface in $(\mathbb{P}^3)^{\vee}$.

smooth example

polarizations

fibrations by Pryms

dual fibrations

Finiteness

Thm (S-): Fixing $d_1 | \dots | d_n$, there are finitely many Lagrangian fibrations up to deformation with

- polarization type (d_1, \ldots, d_n) ,
- a global section,
- maximally varying fibres,
- semistable singular fibres in codimension one.

Thm (S-): In each dimension 2n the overall degree $d_1 \cdots d_n$ of the fibres can take only finitely many values up to an n^{th} power k^n .

smooth example 00000 polarizations

fibrations by Pryms •0000000 dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Generalized) Prym varieties

Let $\pi: C \to D$ be a double cover of curves with covering involution τ . Then

$$\operatorname{Fix}^{\mathsf{0}}(\tau^*) = \pi^* \operatorname{Jac}^{\mathsf{0}} D \subset \operatorname{Jac}^{\mathsf{0}} C.$$

Def: The Prym variety of C/D is

$$\operatorname{Prym}(C/D) := \operatorname{Fix}^{0}(-\tau^{*}),$$

an abelian variety of dimension $g_C - g_D$ and polarization type

$$(\underbrace{1,\ldots,1}_{g_C-2g_D},\underbrace{2,\ldots,2}_{g_D}).$$

 $\operatorname{Prym}(C/D)$ is principally polarized iff $\pi : C \to D$ has zero or two branch points.

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

Families of Prym varieties

Let $\pi : S \to T$ be a K3 double cover of another surface with *anti-symplectic* covering involution τ . A curve $D \subset T$ has a double cover $C \subset S$,

$$\begin{array}{ccc} C & \subset & S \\ {}_{2:1} \downarrow & & {}_{2:1} \downarrow \\ D & \subset & T. \end{array}$$

Let $\mathcal{D} \to |D|$ be the complete linear system in T, $\mathcal{C} = \pi^* \mathcal{D}$.

Thm (Markushevich-Tikhomirov, Arbarello-Saccà-Ferretti, Matteini): We can construct a relative Prym variety

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) := \operatorname{Fix}^{0}(\mathcal{E} \mapsto \mathcal{E}xt_{\mathcal{S}}^{1}(\tau^{*}\mathcal{E}, \mathcal{O}(-\mathcal{C}))) \subset \overline{\operatorname{Jac}}^{0}(\widetilde{\mathcal{C}}/|\mathcal{C}|).$$

This is a symplectic variety and a Lagrangian fibration over |D|.

smooth example

polarizations

fibrations by Pryms

dual fibrations

Examples

1. Markushevich-Tikhomirov system: S/T a K3 double cover of a degree two del Pezzo, C/D a genus three cover of an elliptic curve, Prym(C/D) an abelian surface of type (1, 2).

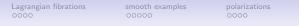
Then $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^2$ is an *irreducible* symplectic orbifold of dimⁿ four, with 28 isolated singularities that look like $\mathbb{C}^4/\pm 1$.

2. Arbarello-Saccà-Ferretti system: S/T a K3 double cover of an Enriques, D genus n + 1, Prym(C/D) principally polarized.

Then $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^n$ is a symplectic variety, which is

- birational to HilbⁿK3 if D is hyperelliptic,
- simply connected, no symplectic resolution, otherwise,
- and irreducible if *n* is even.

Qu: Why does the classification for Jacobian fibrations not apply?



fibrations by Pryms

dual fibrations

Examples

3. Matteini system: S/T a K3 double cover of a cubic del Pezzo, C/D a genus four cover of an elliptic curve, Prym(C/D) an abelian threefold of type (1, 1, 2).

 $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^3$ is an *irreducible* symplectic orbifold of dimⁿ six, with singularities that look like $\mathbb{C}^2 \times (\mathbb{C}^4/\pm 1)$ and $\mathbb{C}^6/\mathbb{Z}_2 \times \mathbb{Z}_2$.

Questions:

- What are the structure of the singularities?
- Are these varieties simply connected? Are they irreducible?

smooth exampl 00000 polarizations

fibrations by Pryms

dual fibrations

A six-dimensional example

S/T a K3 double cover of a degree one del Pezzo, $D \in |-2K_T|$, C/D a genus five cover of a genus two curve. Then

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) := \operatorname{Fix}^{0}(-) \subset \overline{\operatorname{Jac}}^{0}(\widetilde{\mathcal{C}}/|\mathcal{C}|) \leftarrow \operatorname{OG10}$$

is a symplectic variety of dimⁿ six and a Lagrangian fibration with abelian fibres of type (1, 2, 2) over $|D| \cong \mathbb{P}^3$.

Lemma (Arbarello et al.): If $C = C_1 \cup C_2$ with $C_1.C_2 = 2k$ then $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$ looks locally like $\mathbb{C}^{N-2k} \times (\mathbb{C}^{2k}/\pm 1)$ at $[\mathcal{F}_1 \oplus \mathcal{F}_2]$.

Thm (S-Shen): Prym(C/D) contains 120 isolated singularities that look like $\mathbb{C}^6/\pm 1$ (and thus there is no symplectic resolution).

smooth exampl 00000

polarizations

fibrations by Pryms

dual fibrations

A birational model

The del Pezzo T is a double cover of the quadric cone Q. The covering involution lifts to another anti-symplectic involution on S:

The anti-symplectic involutions commute and their composition gives a symplectic involution on S, with quotient a singular K3 surface \overline{S} with 8 A_1 -singularities.

・ロト・日本・日本・日本・日本・日本

A birational model

A generic τ -invariant $C \subset S$ is an étale double cover of a genus three curve $\overline{C} \subset \overline{S}$, which is isomorphic to $\widetilde{C} \subset \widetilde{S}$.

Pull-back induces a map

$$\operatorname{Jac}^{0}\widetilde{C} = \operatorname{Jac}^{0}\overline{C} \longrightarrow \operatorname{Jac}^{0}C$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

which is two-to-one onto its image Prym(C/D).

smooth exampl 00000 polarizations

fibrations by Pryms

dual fibrations

A birational model

Let $\widetilde{\mathcal{M}} := \overline{\operatorname{Jac}}^0(\widetilde{\mathcal{C}}/\mathbb{P}^3)$ be the Beauville-Mukai system of $\widetilde{\mathcal{C}} \subset \widetilde{\mathcal{S}}$. Then there is a rational dominant generically two-to-one map

 $\widetilde{\mathcal{M}} \dashrightarrow \operatorname{Prym}(\mathcal{C}/\mathcal{D}).$

Moreover, $\widetilde{\mathcal{M}}$ is deformation equivalent to $\mathrm{Hilb}^3 \widetilde{\mathcal{S}}$.

Thm (S-Shen): For $Prym(\mathcal{C}/\mathcal{D})$ we have

- the symplectic structure is unique up to a scalar, $h^{2,0} = 1$,
- vanishing $h^{1,0} = 0$.

Rmk: We say that $Prym(\mathcal{C}/\mathcal{D})$ is a *primitive* symplectic variety.

mooth example

polarizations

fibrations by Pryms

dual fibrations

Summary of six-dimensional examples

Example	Polarization type	
Hilb^3 of elliptic K3	(1, 1, 1)	
Beauville-Mukai system	(1,1,1)	
ASF system (non-hyperelliptic)	(1, 1, 1)	
Matteini system	(1, 1, 2)	
Isotrivial system on $K_3(A)$	(1, 1, 4)	
Debarre system for $A^{1,4}$	(1, 1, 4)	
Debarre system for $A^{2,2}$	(1, 2, 2)	
O'Grady 6 on $A^{2,2}$	(1,2,2)	
S-Shen system	(1,2,2)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

Dual fibrations for principal polarizations

The dual \hat{A} of A has polarization type

$$\left(\frac{d_1d_n}{d_n},\frac{d_1d_n}{d_{n-1}},\ldots,\frac{d_1d_n}{d_2},\frac{d_1d_n}{d_1}\right)$$

Principally polarized abelian varieties are self-dual: for smooth C

$$\widehat{\operatorname{Jac}^0 C} := \operatorname{Pic}^0(\operatorname{Jac}^0 C) \cong \operatorname{Jac}^0 C.$$

Thm (Esteves-Kleiman): For integral *C* with surficial singularities

$$\overline{\operatorname{Pic}}^{0}(\overline{\operatorname{Jac}}^{0}C) \cong \overline{\operatorname{Jac}}^{0}C.$$

Cor: If $X \to \mathbb{P}^n$ is a Lagrangian fibration by Jacobians with a global section then $\hat{X} \cong X$ (at least over smooth and mildly singular fibres).

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

Dual fibrations of Debarre system

Recall the Debarre system constructed from $C \subset A^{1,n+1}$. Dualizing

$$0 \longrightarrow X_t \longrightarrow \overline{\operatorname{Jac}}^0 C \longrightarrow A \longrightarrow 0$$

gives

$$0 \longrightarrow \hat{A} \longrightarrow \widehat{\overline{\operatorname{Jac}}^0 C} \cong \overline{\operatorname{Jac}}^0 C \longrightarrow \hat{X}_t \longrightarrow 0.$$

Thm (S-): $\hat{A} = \operatorname{Pic}^0 A$ acts naturally on $Y := \overline{\operatorname{Jac}}^0(\mathcal{C}/\mathbb{P}^n)$ and $\hat{X} := [Y/\hat{A}]$ is an orbifold.

Thm (Kim):

$$\Gamma := \operatorname{kernel}(X_t \longrightarrow \hat{X}_t) = \operatorname{kernel}(\hat{A} \to A) \cong \mathbb{Z}/(n+1) \oplus \mathbb{Z}/(n+1)$$

acts fibrewise on X/\mathbb{P}^n and $\hat{X} := [X/\Gamma]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary of six-dimensional examples

Example	Туре		Dual
Hilb^3 of elliptic K3	(1, 1, 1)	(1, 1, 1)	Hilb^3 of elliptic K3
Beauville-Mukai	(1, 1, 1)	(1,1,1)	Beauville-Mukai
ASF system	(1, 1, 1)	(1, 1, 1)	ASF system
Matteini system	(1, 1, 2)		
Isotrivial on $K_3(A)$	(1, 1, 4)	(1, 4, 4)	Kim/S-
Debarre for $A^{1,4}$	(1, 1, 4)	(1, 4, 4)	Kim/S-
Debarre for $A^{2,2}$	(1, 2, 2)	(1, 1, 2)	Kim
O'Grady 6 on $A^{2,2}$	(1,2,2)	(1, 1, 2)	Kim
S-Shen system	(1,2,2)		

smooth example 00000 polarizations

fibrations by Pryms

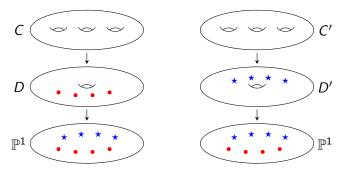
dual fibrations

Pantazis's bigonal construction

Given a tower $C \xrightarrow{2:1} D \xrightarrow{2:1} \mathbb{P}^1$ we can construct $C' \xrightarrow{2:1} D' \xrightarrow{2:1} \mathbb{P}^1$

$$C' := \{ \text{pairs of lifts } (c_1, c_3), (c_1, c_4), (c_2, c_3), (c_2, c_4) \}.$$

This interchanges the branch points of the double covers.



Thm (Pantazis): Prym(C'/D') is dual to Prym(C/D).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

smooth example 00000 polarizations 0000 fibrations by Pryms

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dual of the Markushevich-Tikhomirov system

A K3 double cover S/T of a degree two del Pezzo is given by two quartics Δ and Δ' in \mathbb{P}^2 that are tangent at eight points.

- $f: T \to \mathbb{P}^2$ is a double cover branched over Δ
- $S \to T$ is branched over one component of $f^{-1}(\Delta')$

Applying the bigonal construction gives $S' \xrightarrow{2:1} T' \xrightarrow{2:1} \mathbb{P}^2$, with the roles of the quartics Δ and Δ' switched.

Thm (Menet): $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ over \mathbb{P}^2 is dual to $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$.

Thus the dual of a Markushevich-Tikhomirov system is another Markushevich-Tikhomirov system.

Qu: Is there a relation between $D^b(S)$ and $D^b(S')$?

smooth example

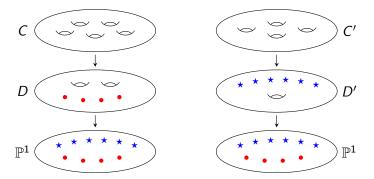
polarizations

fibrations by Pryms

dual fibrations

Dual of our fibration

Fibres are Prym(C/D) with $g_C = 5$ and $g_D = 2$. Pantazis gives:



Thus Prym(C'/D') look like fibres of the Matteini system.

Questions: How to go from $S \xrightarrow{2:1} T \xrightarrow{2:1} Q$ to $S' \xrightarrow{2:1} T' \xrightarrow{???} Q$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

smooth example

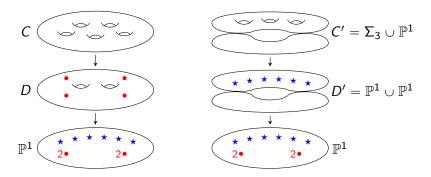
polarizations

fibrations by Pryms 00000000

(日) (四) (日) (日) (日)

dual fibrations

Dual of our fibration



The dual of the abelian threefold Prym(C/D) is

$$\begin{array}{rcl} \operatorname{Prym}(\mathcal{C}'/D') & \longleftrightarrow & \operatorname{Jac}^0\mathcal{C}' & \subset & \overline{\operatorname{Jac}}^0\mathcal{C}' \\ & & & \downarrow \\ & & & Jac^0\Sigma_3. \end{array}$$

smooth example

polarizations

fibrations by Pryms

dual fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Dual of our fibration

Compare

$$\operatorname{Jac}^0\widetilde{C}=\operatorname{Jac}^0\overline{C}\longrightarrow\operatorname{Jac}^0C,$$

two-to-one onto $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$, to

$$\operatorname{Prym}({\mathcal C}'/{\mathcal D}') \longrightarrow \operatorname{Jac}^0\Sigma_3.$$

In fact, $\widetilde{C} = \overline{C}$ and Σ_3 are the same curve!

Start with $S \xrightarrow{2:1} T \xrightarrow{2:1} Q$, a K3 double cover of a degree one del Pezzo cover of a quadric cone. The bigonal construction gives

$$S' = \overline{S} \cup \mathbb{P}^2 \xrightarrow{2:1} T' = Q \cup Q \xrightarrow{2:1} Q.$$

Rmk: Though S' and T' are not normal, and all curves C' and D' are reducible, Prym(C'/D') is smooth in general.

smooth example

polarizations 0000 fibrations by Pryms 00000000 dual fibrations

Dual of our fibration

Thm (S-): $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ over \mathbb{P}^3 is dual to $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$.

Rmk: $\operatorname{Prym}(\mathcal{C}'/\mathcal{D}')$ is a double cover of the same Beauville-Mukai system that $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$ is a $\mathbb{Z}/2\mathbb{Z}$ quotient of.

Question: Is S'/T' a degeneration of a K3 double cover of a cubic del Pezzo? Is Prym(C'/D') a degeneration of the Matteini system?

smooth example

polarizations

fibrations by Pryms 000000000 dual fibrations

Parameters

The Matteini system depends on 13 parameters:

- 4 parameters for the cubic surface,
- 9 parameters for the branch locus in |-2K|.

Our system depends on 11 parameters:

- 8 parameters for the degree one del Pezzo T,
- 3 parameters for the branch locus in $|-2K_T|$.

However, $\operatorname{Prym}(\mathcal{C}/\mathcal{D})$ has two singular loci, locally $\mathbb{C}^4 \times (\mathbb{C}^2/\pm 1)$. Resolving creates two more divisors, and thus two more parameters.

Question: Is a general deformation of $\widetilde{\mathrm{Prym}(\mathcal{C}/\mathcal{D})}$ dual to the Matteini system?

smooth example 00000 polarizations

fibrations by Pryms

dual fibrations

Summary of six-dimensional examples

Example	Туре		Dual
Hilb ³ of elliptic K3	(1, 1, 1)	(1, 1, 1)	Hilb ³ of elliptic K3
Beauville-Mukai	(1, 1, 1)	(1, 1, 1)	Beauville-Mukai
ASF system	(1, 1, 1)	(1, 1, 1)	ASF system
Matteini system	(1, 1, 2)		
Isotrivial on $K_3(A)$	(1, 1, 4)	(1, 4, 4)	Kim/S-
Debarre for $A^{1,4}$	(1, 1, 4)	(1, 4, 4)	Kim/S-
Debarre for $A^{2,2}$	(1, 2, 2)	(1, 1, 2)	Kim
O'Grady 6 on $A^{2,2}$	(1,2,2)	(1, 1, 2)	Kim
S-Shen system	(1,2,2)	(1, 1, 2)	degenerate Matteini?