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Overview

‚ generalities on Lagrangian fibrations

‚ examples in four dimensions

‚ examples in six dimensions

‚ classification results

‚ polarization types

(partly joint work with Chen Shen and Xuqiang Qin)
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Holomorphic symplectic manifolds

Let X be a compact Kähler manifold with c1 “ 0.

Thm (Bogomolov): D finite étale cover rX of X with

rX “ T ˆ
ź

i

CYi ˆ
ź

j

IHSj ,

T “ torus, CYi “ (strict) Calabi-Yau manifolds, and IHSj “ ...

Def: A compact Kähler manifold X is a holomorphic symplectic
manifold if it admits a non-degenerate holomorphic two-form σ.

In addition if π1pX q “ 0 and H0pΩ2q is generated by σ then we say
X is an irreducible holomorphic symplectic (IHS) manifold .
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Examples of IHS manifolds

1. Hilbert schemes of points on K3 surfaces, HilbnS Ñ SymnS .

2. Generalized Kummer varieties, ČHilbn`1A “ Aˆ KnpAq.
Equivalently KnpAq :“ kernelpHilbn`1A ÝÑ Symn`1A ÝÑ Aq.

3. Mukai moduli spaces of stable sheaves on K3/abelian surfaces.

Ext1pE , Eq ˆ Ext1pE , Eq Ñ Ext2pE , Eq tr
ÝÑ H2pOq – C

4. O’Grady’s spaces, OG6 and OG10.

Up to deformation, two/three (smooth) examples known in
dimensions four/six: Hilb2S , K2pAq, Hilb

3S , K3pAq, and OG6.
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Fibrations

Let X be an IHS manifold of dimension 2n.

Thm (Matsushita): If X Ñ B is a proper fibration then

1. dimB “ n “ dimF ,

2. F is Lagrangian wrt the holomorphic symplectic form σ,

3. generic fibre is a complex torus.

Thm (Hwang): B is isomorphic to Pn if it is smooth.

Thm (Huybrechts-Xu): B is smooth if n “ 2, thus B – P2.

Rmk (Voisin): Hodge theory ùñ general fibre is an abelian
variety.
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Polarizations of abelian varieties

A polarization H of an abelian variety gives

c1pHq P H
2pA,Zq “ Λ2H1pA,Zq˚.

With respect to a standard basis

c1pHq “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

d1

d2

. . .

dn
´d1

´d2

. . .

´dn

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with d1|d2| ¨ ¨ ¨ |dn. We call this the type of the polarization.
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Examples for HilbnS

1a. Beauville-Mukai system: Let C be a genus n curve in a K3
surface S , with |C | – Pn and C{Pn the family of curves linearly
equivalent to C .

X :“ Jac
d
pC{Pnq ÝÑ Pn

is a Lagrangian fibration, deformation equivalent to HilbnS .

Or X – moduli space Mp0, rC s, 1´ g ` dq of stable sheaves on S .

1b. If S ÝÑ P1 is an elliptic K3 surface then the Hilbert scheme

HilbnS Ñ SymnS Ñ SymnP1 “ Pn

is a Lagrangian fibration. Its fibres look like

E1 ˆ E2 ˆ ¨ ¨ ¨ ˆ En.
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(Generalized) Prym varieties

Let π : C Ñ D be a double cover of curves with covering
involution τ . Then

Fix0pτ˚q “ π˚Jac0D Ă Jac0C .

Def: The Prym variety of C{D is an abelian variety

PrympC{Dq :“ Fix0p´τ˚q,

of dimension gC ´ gD , principally polarized if π : C Ñ D has zero
or two branch points, otherwise polarization type

p1, . . . , 1
loomoon

gC´2gD

, 2, . . . , 2
loomoon

gD

q.
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Families of Prym varieties

Let π : S Ñ T be a K3 double cover of another surface with
anti-symplectic covering involution τ .

Thm (Nikulin): There exist 75 anti-symplectic involutions τ on
K3s. The quotient T “ S{τ is an Enriques or a rational surface.

A curve D Ă T has a double cover C Ă S ,

C Ă S

2:1 Ó 2:1 Ó

D Ă T .

Let D Ñ |D| be the complete linear system in T , let rC Ñ |C | be
the complete linear system in S , and let

C :“ π˚D Ă rC.
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Families of Prym varieties

There are two commuting anti-symplectic involutions on the

Beauville-Mukai system Jac
0
prC{|C |q:

‚ the involution τ˚ induced by τ ,

‚ fibrewise duality E ÞÑ Ext1
SpE ,Op´C qq (takes ι˚L ÞÑ ι˚L_).

Thm (Markushevich-Tikhomirov, Arbarello-Saccà-Ferretti,
Matteini): We can construct a relative Prym variety

PrympC{Dq :“ Fix0pE ÞÑ Ext1
Spτ

˚E ,Op´C qqq Ă Jac
0
prC{|C |q.

This is a symplectic variety and a Lagrangian fibration over |D|.
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p1, 2q-polarized examples

3a. Markushevich-Tikhomirov system: S{T a K3 double cover
of a degree two del Pezzo, C{D a genus three cover of an elliptic
curve, PrympC{Dq an abelian surface of type p1, 2q.

Then PrympC{Dq Ñ P2 is an irreducible symplectic orbifold of
dimension four, with 28 isolated C4{ ˘ 1 singularities.

Rmk: This orbifold is a partial resolution of the quotient of Hilb2S
by a symplectic involution, sometimes called the Nikulin variety .
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p1, 2q-polarized examples

Another fibration on the Nikulin variety is constructed as follows.

3b. F r2s acts fibrewise by translation on the Kummer K3

S Ñ E ˆ F { ˘ 1 Ñ E{ ˘ 1 – P1

and there is an induced fibrewise action on Hilb2S Ñ P2.

Rmk: Each element of F r2s acts as a symplectic involution.

Quotient by the action of a single element and blow-up the K3 of
singularities to get an orbifold X .

Prop: X is an isotrivial Lagrangian fibration over P2.

Rmk: Fibres F ˆ F {Z2 are p1, 2q-polarized. Moreover, X has
b2 “ 16, b3 “ 0, b4 “ 178, and 28 isolated C4{ ˘ 1 singularities.
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Principally polarized examples

2a. Arbarello-Saccà-Ferretti system: S{T a K3 double cover of
an Enriques, D genus n ` 1, PrympC{Dq principally polarized.

Then PrympC{Dq Ñ Pn is a symplectic variety, which is

‚ birational to a Beauville-Mukai system if D is hyperelliptic,

‚ simply connected with no symplectic resolution otherwise,

‚ and irreducible if n is even.

If n “ 2 or 3 it has isolated C4{ ˘ 1 or C6{ ˘ 1 singularities.

Lemma: If C “ C1 Y C2 with C1.C2 “ 2k then a neighbourhood
of rF1 ‘ F2s P PrympC{Dq looks locally like CN´2k ˆ pC2k{ ˘ 1q.
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Principally polarized examples

2b. Let S be a Kummer K3 surface with an elliptic fibration

S ÝÑ E ˆ F { ˘ 1 ÝÑ E{ ˘ 1 – P1.

Hilb2S Ñ P2 is an isotrivial fibration with smooth fibres F ˆ F .

The group F r2s – Z‘2
2 acts by diagonal translation on F ˆ F and

fibrewise on Hilb2S . Take the quotient Hilb2S{Z‘2
2 and blow-up

codimension two singularities to get a symplectic orbifold X .

Prop: X is an isotrivial Lagrangian fibration over P2.

Rmk: Fibres F ˆF {F r2s are principally polarized. Moreover, X has
b2 “ 14, b3 “ 0, b4 “ 150, and 36 isolated C4{ ˘ 1 singularities.
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Examples for KnpAq

4a. Debarre system: Let C Ă A give a polarization of type
p1, n` 1q. Then C has genus n` 2 and |C | – Pn. Let C{Pn be the
family of curves linearly equivalent to C and

Y :“ Jac
d
pC{Pnq ÝÑ Pn.

We get a Lagrangian fibration

X :“ kernelpAlb : Y ÝÑ Aq

with p1, . . . , 1, n ` 1q-polarized fibres Xt “ kerpJac
d
Ct ÝÑ Aq.

4b. If A “ E ˆ F then

Hilbn`1A ÝÑ Symn`1A ÝÑ Symn`1E ÝÑ Jn`1E – E

induces an isotrivial Lagrangian fibration KnpAq ÝÑ Pn with
p1, . . . , 1, n ` 1q-polarized fibres

– tpf0, f1, . . . , fnq P F
n`1 | f0 ` f1 ` . . .` fn “ 0 in F u.
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Summary of examples in four dimensions

Example Polarization type
Beauville-Mukai system p1, 1q
Hilb2S of an elliptic K3 S p1, 1q

Arbarello-Saccà-Ferretti system p1, 1q

Isotrivial system on Hilb2S{Z‘2
2 p1, 1q

Markushevich-Tikhomirov system p1, 2q
Isotrivial system on Hilb2S{Z2 p1, 2q

Debarre system for A1,3 p1, 3q
Isotrivial system on K2pE ˆ F q p1, 3q



Lagrangian fibrations 4d examples 6d examples classification polarizations

More six-dimensional examples

Matteini system: S{T a K3 double cover of a cubic del Pezzo,
C{D a genus four cover of an elliptic curve, PrympC{Dq an
abelian threefold of type p1, 1, 2q.

PrympC{Dq Ñ P3 is an irreducible symplectic orbifold of dimn six,
with singularities that look like C2 ˆ pC4{ ˘ 1q and C6{Z2 ˆ Z2.

S-Shen system: S{T a K3 double cover of a degree one del
Pezzo, D P | ´ 2KT |, C{D a genus five cover of a genus two curve,
PrympC{Dq an abelian threefold of type p1, 2, 2q. Then

PrympC{Dq :“ Fix0p´q Ă Jac
0
prC{|C |q Ð OG10

is a symplectic variety of dimn six, with 120 isolated singularities
that look like C6{ ˘ 1.
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A birational model

The del Pezzo T is a double cover of the quadric cone Q. The
covering involution lifts to another anti-symplectic involution on S .

Their composition gives a symplectic involution on S , with
quotient a singular K3 surface S with 8 A1-singularities.

C Ă S rC Ă rS “ resolution of S
Ö Ó Œ Ö

D Ă T P2 C Ă S
Œ Ó Ö

Q

A generic τ -invariant C Ă S is an étale double cover of a genus
three curve C Ă S , which is isomorphic to rC Ă rS .
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A birational model

Pull-back induces a map

Jac0
rC “ Jac0C ÝÑ Jac0C

which is two-to-one onto its image PrympC{Dq.

Let ĂM :“ Jac
0
prC{P3q be the Beauville-Mukai system of rC Ă rS .

Then there is a rational dominant generically two-to-one map

ĂM 99K PrympC{Dq.

Moreover, ĂM is deformation equivalent to Hilb3
rS .

Thm (S-Shen): PrympC{Dq is a primitive symplectic variety:

‚ the symplectic structure is unique up to a scalar, h2,0 “ 1,

‚ we have vanishing of the Hodge number h1,0 “ 0.
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Examples for K3pAq and OG6

Debarre system/OG6: Let C Ă A give a polarization of type
p2, 2q. Then C has genus 5 and |C | – P3. Consider

Y :“ Jac
d
pC{P3q ÝÑ P3,

i.e., Y – Mp0, rC s, d ´ 4q on A, and X :“ kernelpAlb : Y ÝÑ Aq.

‚ If d is odd then X is deformation equivalent to K3pAq.

‚ If d is even then rX is deformation equivalent to OG6.

Rmk: Both cases have fibres of polarization type p1, 2, 2q.
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Summary of examples in six dimensions

Example Polarization type
Beauville-Mukai system p1, 1, 1q
Hilb3S of an elliptic K3 S p1, 1, 1q

Arbarello-Saccà-Ferretti system p1, 1, 1q

Matteini system p1, 1, 2q

S-Shen system p1, 2, 2q

Debarre system for A1,4 p1, 1, 4q
Isotrivial system on K3pAq p1, 1, 4q
Debarre system for A2,2 p1, 2, 2q

O’Grady 6 on A2,2 p1, 2, 2q
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Fibrations by Jacobians

Thm (Markushevich): Let C{P2 be a flat family of integral

Gorenstein curves of genus two such that X “ Jac
d
pC{P2q is a

Lagrangian fibration (with X smooth!). Then X Ñ P2 must be a
Beauville-Mukai integrable system.

Rmk: The general principally polarized abelian surface is the
Jacobian of a genus two curve.

Thm (Matsushita): R iπ˚OX – Ωi
P2 .

When i “ 1 this says TF – N_FĂX for smooth fibres F .

Moreover, we have R1π˚OC – R1π˚OX – Ω1
P2 .
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Fibrations by Jacobians

Proof: The relative canonical map gives a double cover

C ÝÑ PpR1π˚OCq “ PpR1π˚OX q “ PpΩ1
P2q Ă P2 ˆ pP2q_

branched over the zero locus in PpΩ1
P2q of a section of

OPpΩ1qp6q b π
˚OP2p2kq “ Op2k ` 6, 6q|PpΩ1q.

Now R1π˚OC “ Ω1
P2 determines k “ ´3, so

Op2k ` 6, 6q|PpΩ1q “ Op0, 6q|PpΩ1q

is pulled back from pP2q_. This means the curves lie in the double
cover of pP2q_ branched over a sextic, i.e., a K3 surface.

l
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Fibrations by products of elliptic curves

Thm (Kamenova): Let X Ñ P2 be a Lagrangian fibration with

‚ X smooth,

‚ general fibre a product of two elliptic curves,

‚ “generic” singular fibres,

‚ and a global section.

Then X is birational to Hilb2S of an elliptic K3 surface S .

Thm (Debarre-Huybrechts-Macr̀ı-Voisin): Let X Ñ P2 be a
(numerical!) Lagrangian fibration with X smooth and a divisor
Y Ă X inducing a principal polarization on a general fibre. Then
X is a deformation of Hilb2S .

Rmk: These results cover examples 1a and 1b in four dimensions.
Next consider example 3a with p1, 2q-polarized fibres.
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Fibrations by p1, 2q-polarized fibres

If A is p1, 2q-polarized then A_ is too. Let C Ă A_ be a
polarization. Then C is genus three, and pull-back gives

A “ Pic0A_ ÝÑ Jac0C ÝÑ E ,

i.e., A is the Prym variety of a double cover C Ñ E .

Thm (Qin-S-): Let C{E{P2 be a flat family of double covers of
reduced Gorenstein curves of genus three and one, respectively,
such that X “ PrympC{Eq is a Lagrangian fibration. Then
X Ñ P2 must be a Markushevich-Tikhomirov system

Thus the elliptic curves E must lie in a degree two del Pezzo and
the genus three curves C must lie in its K3 double cover.
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Fibrations by p1, 2q-polarized fibres

Proof: f : C Ñ E is branched over a divisor of degree four on each
fibre. Thus there is a line bundle L of degree two on each fibre with

f˚OC “ OE ‘ L_.

Applying R1π˚ gives (π always denotes projection to P2)

R1π˚OC “ R1π˚OE ‘ R1π˚L_.

On the other hand, Jac0C „ Jac0E ˆ PrympC{E q implies

H1pC ,OC q “ H1pE ,OE q ‘H1pXt ,OXt q,

R1π˚OC “ R1π˚OE ‘ R1π˚OX .
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Fibrations by p1, 2q-polarized fibres

Therefore
R1π˚L_ – R1π˚OX – Ω1

P2 ,

and we have a double cover

h : E ÝÑ PpR1π˚L_q “ PpΩ1
P2q Ă P2 ˆ pP2q_

branched over the zero locus in PpΩ1
P2q of a section of

OPpΩ1qp4q b π
˚OP2p2dq “ Op2d ` 4, 4q|PpΩ1q.

Recall C Ñ E is branched over the zero locus in E of a section of

L2 – h˚pOPpΩ1qp2q b π
˚OP2peqq “ h˚Ope ` 2, 2q|PpΩ1q.

Now R1π˚L_ “ Ω1
P2 determines d “ ´2 and e “ ´2.
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Fibrations by p1, 2q-polarized fibres

So
Op2d ` 4, 4q|PpΩ1q “ Op0, 4q|PpΩ1q,

h˚Ope ` 2, 2q|PpΩ1q “ h˚Op0, 2q|PpΩ1q

are pulled back from pP2q_.

This means the elliptic curves E lie in the double cover of pP2q_

branched over a quartic, i.e., a degree two del Pezzo surface T .

Rmk: If g : T Ñ pP2q_ then

KT – g˚pOp´3q bOp2qq “ g˚Op´1q.

Moreover, the genus three curves C lie in the double cover of T
branched over the pull-back of a conic – K´2

T , i.e., a K3 surface.
l
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Fibrations by Jacobians in six dimensions

Thm (S-): Let C{P3 be a flat family of reduced curves of genus 3

such that X “ Jac
d
pC{P3q is a Lagrangian fibration. If the curves

‚ are irreducible Gorenstein non-hyperelliptic, or

‚ are canonically positive 2-connected hyperelliptic,

then X {P3 must be a Beauville-Mukai integrable system.

Rmk: The general principally polarized abelian threefold is the
Jacobian of a (non-hyperelliptic) curve of genus three.

Qu: If the general fibre of X {P3 is the product E1 ˆ E2 ˆ E3 of
elliptic curves, must X be Hilb3S of an elliptic K3 S?
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Fibrations by Jacobians in six dimensions

Proof (in the non-hyperelliptic case): The relative canonical
embedding gives

C Ñ PpR1π˚OCq “ PpR1π˚OX q “ PpΩ1
P3q Ă P3 ˆ pP3q_.

Indeed C is the zero locus in PpΩ1
P3q of a section of

OPpΩ1qp4q b π
˚OP3pkq “ Opk ` 4, 4q|PpΩ1q.

Now R1π˚OC “ Ω1
P3 determines k “ ´4, so

Opk ` 4, 4q|PpΩ1q “ Op0, 4q|PpΩ1q

is pulled back from pP3q_. This means the curves are hyperplane
sections of a quartic K3 surface in pP3q_.
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An invariant of Lagrangian fibrations

Thm (Wieneck): In a family of Lagrangian fibrations the
polarization type of the fibres is constant.

For fibrations on HilbnK3 the polarization is principal

pd1, d2, . . . , dnq “ p1, 1, . . . , 1q.

For fibrations on KnpAq the polarization is of type

pd1, d2, . . . , dn´2, dn´1, dnq “ p1, 1, . . . , 1, dn´1, dnq

with dn´1dn “ n ` 1.

Thm (Markman): If X is a general deformation of HilbnK3
admitting a Lagrangian fibration then it is birational to a
Tate-Shafarevich twist of Beauville-Mukai system.
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Finiteness

Thm (S-): Fixing d1| . . . |dn, there are finitely many Lagrangian
fibrations up to deformation with

‚ polarization type pd1, . . . , dnq,

‚ a global section,

‚ maximally varying fibres,

‚ semistable singular fibres in codimension one.

Rmk: van Geemen-Voisin and Bakker proved that Lagrangian
fibrations are maximally varying or isotrivial.

Rmk: Using a theorem of Charles, Kamenova showed that it is
enough to assume there is a fibration with a fixed polarization
type. (See also Debarre-Huybrechts-Macr̀ı-Voisin.)

Thus, we want to bound the polarization type.
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Restrictions on polarization type

Thm (S-): Let X Ñ P2 be a Lagrangian fibration (with X
smooth!) and let Y P H2pX ,Zq restrict to a polarization of type
pd1, d2q on each smooth fibre. Then d1d2 can take only the
following twenty values up to a square:

1, 2, 3, 5, 7, 10, 15, 61, 62, 241, 246, 247,

249, 251, 253, 254, 255, 257, 258, 259

Example: Polarization types p1, 6q and p1, 11q are not possible.
Debarre-Huybrechts-Macr̀ı-Voisin showed that p1, 2q, p1, 5q, and
p1, 7q are also not possible (for X smooth!).

Rmk: In higher dimensions, the overall degree d1 ¨ ¨ ¨ dn of the
fibres can take only finitely many values up to an nth power.
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Restrictions on polarization type

Proof: Let L be the pullback of a hyperplane from P2. Then

ˆ
ż

X
Y 2L2

˙ˆ
ż

X
c2pσσ̄q

˙2

“

ˆ
ż

X
pσσ̄q2

˙ˆ
ż

X
c2YL

˙2

where
ş

X Y 2L2 “ 2!d1d2 and Hitchin-S- formula gives

`ş

X c2pσσ̄q
˘2

ş

X pσσ̄q
2

“
242p2!q2

22

a

ÂrX s.

Thus

1152d1d2

a

ÂrX s “

ˆ
ż

X
c2YL

˙2

is a square.

Guan showed that
a

ÂrX s takes finitely many values.
l
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Summary of examples in four dimensions

Example Polarization type
Beauville-Mukai system p1, 1q
Hilb2S of an elliptic K3 S p1, 1q

Arbarello-Saccà-Ferretti system p1, 1q

Isotrivial system on Hilb2S{Z‘2
2 p1, 1q

Markushevich-Tikhomirov system p1, 2q
Isotrivial system on Hilb2S{Z2 p1, 2q

Debarre system for A1,3 p1, 3q
Isotrivial system on K2pE ˆ F q p1, 3q
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Summary of examples in six dimensions

Example Polarization type
Beauville-Mukai system p1, 1, 1q
Hilb3S of an elliptic K3 S p1, 1, 1q

Arbarello-Saccà-Ferretti system p1, 1, 1q

Matteini system p1, 1, 2q

S-Shen system p1, 2, 2q

Debarre system for A1,4 p1, 1, 4q
Isotrivial system on K3pAq p1, 1, 4q
Debarre system for A2,2 p1, 2, 2q

O’Grady 6 on A2,2 p1, 2, 2q
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Summary of examples in six dimensions with duals

Example Type Type Dual
Beauville-Mukai p1, 1, 1q p1, 1, 1q Beauville-Mukai
Hilb3 of elliptic K3 p1, 1, 1q p1, 1, 1q Hilb3 of elliptic K3

ASF system p1, 1, 1q p1, 1, 1q ASF system

Matteini system p1, 1, 2q

S-Shen system p1, 2, 2q p1, 1, 2q degenerate Matteini?

Debarre for A1,4 p1, 1, 4q p1, 4, 4q Kim/S-
Isotrivial on K3pAq p1, 1, 4q p1, 4, 4q Kim/S-
Debarre for A2,2 p1, 2, 2q p1, 1, 2q Kim/S-

O’Grady 6 on A2,2 p1, 2, 2q p1, 1, 2q Kim/S-
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