Lagrangian fibrations Part I: four dimensions

Justin Sawon¹

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ERC HyperK seminar Paris, June 14-15, 2023

 $^{^{1}}$ Supported by MPIM Bonn and NSF awards DMS-1555206, DMS-2152130. \sim 9.00

Overview

- generalities on Lagrangian fibrations
- examples in four dimensions
- classification results
- polarization types

(partly joint work with Xuqiang Qin)

Holomorphic symplectic manifolds

Let X be a compact Kähler manifold with $c_1 = 0$.

Thm (Bogomolov): \exists finite étale cover \widetilde{X} of X with

$$\widetilde{X} = T \times \prod_{i} CY_{i} \times \prod_{j} IHS_{j},$$

 $T = \text{torus}, CY_i = (\text{strict}) \text{ Calabi-Yau manifolds, and } IHS_i = ...$

Def: A compact Kähler manifold X is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form σ .

In addition if $\pi_1(X) = 0$ and $\mathrm{H}^0(\Omega^2)$ is generated by σ then we say X is an *irreducible holomorphic symplectic (IHS) manifold*.

Examples of IHS manifolds

- **1.** Hilbert schemes of points on K3 surfaces, $\mathrm{Hilb}^n S \to \mathrm{Sym}^n S$.
- **2.** Generalized Kummer varieties, $\operatorname{Hilb}^{n+1}A = A \times K_n(A)$. Equivalently $K_n(A) := \operatorname{kernel}(\operatorname{Hilb}^{n+1}A \longrightarrow \operatorname{Sym}^{n+1}A \longrightarrow A)$.
- **3.** Mukai moduli spaces of stable sheaves on K3/abelian surfaces.

$$\operatorname{Ext}^1(\mathcal{E},\mathcal{E}) \times \operatorname{Ext}^1(\mathcal{E},\mathcal{E}) \to \operatorname{Ext}^2(\mathcal{E},\mathcal{E}) \stackrel{\operatorname{tr}}{\longrightarrow} \operatorname{H}^2(\mathcal{O}) \cong \mathbb{C}$$

4. O'Grady's spaces, OG6 and OG10.

Up to deformation, two (smooth) examples known in dimension four: $\mathrm{Hilb}^2 S$ and $K_2(A)$.

Fibrations

Let X be an IHS manifold of dimension 2n.

Thm (Matsushita): If $X \rightarrow B$ is a proper fibration then

- 1. $\dim B = n = \dim F$,
- 2. F is Lagrangian wrt the holomorphic symplectic form σ ,
- 3. generic fibre is a complex torus.

Thm (Hwang): B is isomorphic to \mathbb{P}^n if it is smooth.

Thm (Huybrechts-Xu): *B* is smooth if n = 2, thus $B \cong \mathbb{P}^2$.

Rmk (Voisin): Hodge theory \implies general fibre is an abelian variety.

Polarizations of abelian varieties

A polarization H of an abelian variety gives

$$c_1(H) \in \mathrm{H}^2(A,\mathbb{Z}) = \Lambda^2 \mathrm{H}_1(A,\mathbb{Z})^*.$$

With respect to a standard basis

with $d_1|d_2|\cdots|d_n$. We call this the *type* of the polarization.

Examples for $Hilb^2 S$

1a. Beauville-Mukai system: Let C be a genus n curve in a K3 surface S, with $|C| \cong \mathbb{P}^n$ and C/\mathbb{P}^n the family of curves linearly equivalent to C.

$$X := \overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^n) \longrightarrow \mathbb{P}^n$$

is a Lagrangian fibration, deformation equivalent to $\mathrm{Hilb}^n S$.

Or $X \cong \text{moduli space } M(0, [C], 1 - g + d)$ of stable sheaves on S.

1b. If $S \longrightarrow \mathbb{P}^1$ is an elliptic K3 surface then the Hilbert scheme

$$\operatorname{Hilb}^n S \to \operatorname{Sym}^n S \to \operatorname{Sym}^n \mathbb{P}^1 = \mathbb{P}^n$$

is a Lagrangian fibration. Its fibres look like

$$E_1 \times E_2 \times \cdots \times E_n$$
.

(Generalized) Prym varieties

Let $\pi: C \to D$ be a double cover of curves with covering involution τ . Then

$$\operatorname{Fix}^0(\tau^*) = \pi^* \operatorname{Jac}^0 D \subset \operatorname{Jac}^0 C.$$

Def: The Prym variety of C/D is an abelian variety

$$Prym(C/D) := Fix^{0}(-\tau^{*}),$$

of dimension $g_C - g_D$, principally polarized if $\pi: C \to D$ has zero or two branch points, otherwise polarization type

$$(\underbrace{1,\ldots,1}_{g_C-2g_D},\underbrace{2,\ldots,2}_{g_D}).$$

Families of Prym varieties

Let $\pi: S \to T$ be a K3 double cover of another surface with anti-symplectic covering involution τ .

Thm (Nikulin): There exist 75 anti-symplectic involutions τ on K3s. The quotient $T = S/\tau$ is an Enriques or a rational surface.

A curve $D \subset T$ has a double cover $C \subset S$,

$$\begin{array}{ccc}
C & \subset & S \\
2:1 \downarrow & & 2:1 \downarrow \\
D & \subset & T.
\end{array}$$

Let $\mathcal{D} \to |D|$ be the complete linear system in T, let $\widetilde{\mathcal{C}} \to |C|$ be the complete linear system in S, and let

$$\mathcal{C} := \pi^* \mathcal{D} \subset \widetilde{\mathcal{C}}.$$

Families of Prym varieties

There are two commuting anti-symplectic involutions on the Beauville-Mukai system $\overline{\operatorname{Jac}}^0(\widetilde{\mathcal{C}}/|\mathcal{C}|)$:

- the involution τ^* induced by τ ,
- fibrewise duality $\mathcal{E} \mapsto \mathcal{E}xt_S^1(\mathcal{E}, \mathcal{O}(-\mathcal{C}))$ (takes $\iota_*\mathcal{L} \mapsto \iota_*\mathcal{L}^{\vee}$).

Thm (Markushevich-Tikhomirov, Arbarello-Saccà-Ferretti, Matteini): We can construct a relative Prym variety

$$\operatorname{Prym}(\mathcal{C}/\mathcal{D}) := \operatorname{Fix}^0(\mathcal{E} \mapsto \mathcal{E} \mathsf{xt}^1_{\mathcal{S}}(\tau^*\mathcal{E}, \mathcal{O}(-\mathcal{C}))) \subset \overline{\operatorname{Jac}}^0(\widetilde{\mathcal{C}}/|\mathcal{C}|).$$

This is a symplectic variety and a Lagrangian fibration over |D|.

(1,2)-polarized examples

3a. Markushevich-Tikhomirov system: S/T a K3 double cover of a degree two del Pezzo, C/D a genus three cover of an elliptic curve, $\operatorname{Prym}(C/D)$ an abelian surface of type (1,2).

Then $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^2$ is an *irreducible* symplectic orbifold of dimension four, with 28 isolated $\mathbb{C}^4/\pm 1$ singularities.

Rmk: This orbifold is a partial resolution of the quotient of $\mathrm{Hilb}^2 S$ by a symplectic involution, sometimes called the *Nikulin variety*.

(1,2)-polarized examples

Another fibration on the Nikulin variety is constructed as follows.

3b. F[2] acts fibrewise by translation on the Kummer K3

$$S \to E \times F/ \pm 1 \to E/ \pm 1 \cong \mathbb{P}^1$$

and there is an induced fibrewise action on $\mathrm{Hilb}^2 S \to \mathbb{P}^2$.

Rmk: Each element of F[2] acts as a symplectic involution.

Quotient by the action of a single element and blow-up the K3 of singularities to get an orbifold X.

Prop: X is an isotrivial Lagrangian fibration over \mathbb{P}^2 .

Rmk: Fibres $F \times F/\mathbb{Z}_2$ are (1,2)-polarized. Moreover, X has $b_2=16$, $b_3=0$, $b_4=178$, and 28 isolated $\mathbb{C}^4/\pm 1$ singularities.

Principally polarized examples

2a. Arbarello-Saccà-Ferretti system: S/T a K3 double cover of an Enriques, D genus n + 1, Prym(C/D) principally polarized.

Then $\operatorname{Prym}(\mathcal{C}/\mathcal{D}) \to \mathbb{P}^n$ is a symplectic variety, which is

- birational to a Beauville-Mukai system if D is hyperelliptic,
- simply connected with no symplectic resolution otherwise,
- and irreducible if n is even.

If n=2 it has isolated $\mathbb{C}^4/\pm 1$ singularities.

Lemma: If $C = C_1 \cup C_2$ with $C_1.C_2 = 2k$ then a neighbourhood of $[\mathcal{F}_1 \oplus \mathcal{F}_2] \in \operatorname{Prym}(\mathcal{C}/\mathcal{D})$ looks locally like $\mathbb{C}^{N-2k} \times (\mathbb{C}^{2k}/\pm 1)$.

Principally polarized examples

2b. Let S be a Kummer K3 surface with an elliptic fibration

$$S \longrightarrow E \times F/ \pm 1 \longrightarrow E/ \pm 1 \cong \mathbb{P}^1.$$

 $\mathrm{Hilb}^2 S \to \mathbb{P}^2$ is an isotrivial fibration with smooth fibres $F \times F$.

The group $F[2] \cong \mathbb{Z}_2^{\oplus 2}$ acts by diagonal translation on $F \times F$ and fibrewise on $\mathrm{Hilb}^2 S$. Take the quotient $\mathrm{Hilb}^2 S/\mathbb{Z}_2^{\oplus 2}$ and blow-up codimension two singularities to get a symplectic orbifold X.

Prop: X is an isotrivial Lagrangian fibration over \mathbb{P}^2 .

Rmk: Fibres $F \times F/F[2]$ are principally polarized. Moreover, X has $b_2 = 14$, $b_3 = 0$, $b_4 = 150$, and 36 isolated $\mathbb{C}^4/\pm 1$ singularities.

Examples for $K_n(A)$

4a. Debarre system: Let $C \subset A$ give a polarization of type (1, n+1). Then C has genus n+2 and $|C| \cong \mathbb{P}^n$. Let C/\mathbb{P}^n be the family of curves linearly equivalent to C and

$$Y := \overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^n) \longrightarrow \mathbb{P}^n.$$

We get a Lagrangian fibration

$$X := \text{kernel}(\text{Alb}: Y \longrightarrow A)$$

with (1, ..., 1, n + 1)-polarized fibres $X_t = \ker(\overline{\operatorname{Jac}}^d C_t \longrightarrow A)$.

4b. If $A = E \times F$ then

$$\operatorname{Hilb}^{n+1}A\longrightarrow\operatorname{Sym}^{n+1}A\longrightarrow\operatorname{Sym}^{n+1}E\longrightarrow J^{n+1}E\cong E$$

induces an isotrivial Lagrangian fibration $K_n(A) \longrightarrow \mathbb{P}^n$ with $(1, \ldots, 1, n+1)$ -polarized fibres

$$\cong \{(f_0, f_1, \dots, f_n) \in F^{n+1} \mid f_0 + f_1 + \dots + f_n = 0 \text{ in } F\}.$$

Summary of examples in four dimensions

Example	Polarization type
Beauville-Mukai system	(1,1)
Hilb ² S of elliptic K3 S	(1,1)
Arbarello-Saccà-Ferretti system	(1,1)
Isotrivial on $\mathrm{Hilb}^2S/\mathbb{Z}_2^{\oplus 2}$	(1,1)
Markushevich-Tikhomirov system	(1, 2)
Isotrivial on $\mathrm{Hilb}^2S/\mathbb{Z}_2$	(1, 2)
Debarre system	(1, 3)
Isotrivial on $K_2(A)$	(1, 3)

Fibrations by Jacobians

Thm (Markushevich): Let \mathcal{C}/\mathbb{P}^2 be a flat family of integral Gorenstein curves of genus two such that $X = \overline{\operatorname{Jac}}^d(\mathcal{C}/\mathbb{P}^2)$ is a Lagrangian fibration (with X smooth!). Then $X \to \mathbb{P}^2$ must be a Beauville-Mukai integrable system.

Rmk: The general principally polarized abelian surface is the Jacobian of a genus two curve.

Thm (Matsushita): $R^i\pi_*\mathcal{O}_X\cong\Omega^i_{\mathbb{P}^2}.$

When i = 1 this says $TF \cong N_{F \subset X}^{\vee}$ for smooth fibres F.

Moreover, we have $R^1\pi_*\mathcal{O}_{\mathcal{C}}\cong R^1\pi_*\mathcal{O}_X\cong\Omega^1_{\mathbb{P}^2}.$

Fibrations by Jacobians

Proof: The relative canonical map gives a double cover

$$\mathcal{C} \longrightarrow \mathbb{P}(R^1\pi_*\mathcal{O}_{\mathcal{C}}) = \mathbb{P}(R^1\pi_*\mathcal{O}_X) = \mathbb{P}(\Omega^1_{\mathbb{P}^2}) \subset \mathbb{P}^2 \times (\mathbb{P}^2)^{\vee}$$

branched over the zero locus in $\mathbb{P}(\Omega^1_{\mathbb{P}^2})$ of a section of

$$\mathcal{O}_{\mathbb{P}(\Omega^1)}(6) \otimes \pi^* \mathcal{O}_{\mathbb{P}^2}(2k) = \mathcal{O}(2k+6,6)|_{\mathbb{P}(\Omega^1)}.$$

Now $R^1\pi_*\mathcal{O}_{\mathcal{C}}=\Omega^1_{\mathbb{P}^2}$ determines k=-3, so

$$\mathcal{O}(2k+6,6)|_{\mathbb{P}(\Omega^1)} = \mathcal{O}(0,6)|_{\mathbb{P}(\Omega^1)}$$

is pulled back from $(\mathbb{P}^2)^{\vee}$. This means the curves lie in the double cover of $(\mathbb{P}^2)^{\vee}$ branched over a sextic, i.e., a K3 surface.

Fibrations by products of elliptic curves

Thm (Kamenova): Let $X \to \mathbb{P}^2$ be a Lagrangian fibration with

- X smooth,
- general fibre a product of two elliptic curves,
- "generic" singular fibres,
- and a global section.

Then X is birational to $Hilb^2S$ of an elliptic K3 surface S.

Rmk: Markushevich and Kamenova's theorems cover examples 1a and 1b. Next consider example 3a with (1,2)-polarized fibres.

If A is (1,2)-polarized then A^{\vee} is too. Let $C \subset A^{\vee}$ be a polarization. Then C is genus three, and pull-back gives

$$A = \operatorname{Pic}^0 A^{\vee} \longrightarrow \operatorname{Jac}^0 C \longrightarrow E,$$

i.e., A is the Prym variety of a double cover $C \rightarrow E$.

Thm (Qin-S-): Let $\mathcal{C}/\mathcal{E}/\mathbb{P}^2$ be a flat family of double covers of reduced Gorenstein curves of genus three and one, respectively, such that $X = \overline{\mathrm{Prym}}(\mathcal{C}/\mathcal{E})$ is a Lagrangian fibration. Then $X \to \mathbb{P}^2$ must be a Markushevich-Tikhomirov system

Thus the elliptic curves $\mathcal E$ must lie in a degree two del Pezzo and the genus three curves $\mathcal C$ must lie in its K3 double cover.

Proof: $f: \mathcal{C} \to \mathcal{E}$ is branched over a divisor of degree four on each fibre. Thus there is a line bundle \mathcal{L} of degree two on each fibre with

$$f_*\mathcal{O}_{\mathcal{C}}=\mathcal{O}_{\mathcal{E}}\oplus \mathcal{L}^{\vee}$$
.

Applying $R^1\pi_*$ gives (π always denotes projection to \mathbb{P}^2)

$$R^1\pi_*\mathcal{O}_{\mathcal{C}} = R^1\pi_*\mathcal{O}_{\mathcal{E}} \oplus R^1\pi_*\mathcal{L}^{\vee}.$$

On the other hand, $\operatorname{Jac}^0 C \sim \operatorname{Jac}^0 E \times \operatorname{Prym}(C/E)$ implies

$$\begin{split} \mathrm{H}^1(C,\mathcal{O}_C) &= \mathrm{H}^1(E,\mathcal{O}_E) \oplus \mathrm{H}^1(X_t,\mathcal{O}_{X_t}), \\ R^1\pi_*\mathcal{O}_{\mathcal{C}} &= R^1\pi_*\mathcal{O}_{\mathcal{E}} \oplus R^1\pi_*\mathcal{O}_{X}. \end{split}$$

Therefore

$$R^1\pi_*\mathcal{L}^{\vee}\cong R^1\pi_*\mathcal{O}_X\cong\Omega^1_{\mathbb{P}^2},$$

and we have a double cover

$$h: \mathcal{E} \longrightarrow \mathbb{P}(R^1\pi_*\mathcal{L}^{\vee}) = \mathbb{P}(\Omega^1_{\mathbb{P}^2}) \subset \mathbb{P}^2 \times (\mathbb{P}^2)^{\vee}$$

branched over the zero locus in $\mathbb{P}(\Omega^1_{\mathbb{P}^2})$ of a section of

$$\mathcal{O}_{\mathbb{P}(\Omega^1)}(4) \otimes \pi^* \mathcal{O}_{\mathbb{P}^2}(2d) = \mathcal{O}(2d+4,4)|_{\mathbb{P}(\Omega^1)}.$$

Recall $\mathcal{C} \to \mathcal{E}$ is branched over the zero locus in \mathcal{E} of a section of

$$\mathcal{L}^2 \cong \mathit{h}^*(\mathcal{O}_{\mathbb{P}(\Omega^1)}(2) \otimes \pi^*\mathcal{O}_{\mathbb{P}^2}(e)) = \mathit{h}^*\mathcal{O}(e+2,2)|_{\mathbb{P}(\Omega^1)}.$$

Now $R^1\pi_*\mathcal{L}^{\vee}=\Omega^1_{\mathbb{P}^2}$ determines d=-2 and e=-2.

So

$$\begin{split} \mathcal{O}(2d+4,4)|_{\mathbb{P}(\Omega^1)} &= \mathcal{O}(0,4)|_{\mathbb{P}(\Omega^1)}, \\ h^*\mathcal{O}(e+2,2)|_{\mathbb{P}(\Omega^1)} &= h^*\mathcal{O}(0,2)|_{\mathbb{P}(\Omega^1)} \end{split}$$

are pulled back from $(\mathbb{P}^2)^{\vee}$.

This means the elliptic curves \mathcal{E} lie in the double cover of $(\mathbb{P}^2)^{\vee}$ branched over a quartic, i.e., a degree two del Pezzo surface \mathcal{T} .

Rmk: If $g: T \to (\mathbb{P}^2)^{\vee}$ then

$$K_T \cong g^*(\mathcal{O}(-3) \otimes \mathcal{O}(2)) = g^*\mathcal{O}(-1).$$

Moreover, the genus three curves $\mathcal C$ lie in the double cover of T branched over the pull-back of a conic $\cong K_T^{-2}$, i.e., a K3 surface.

An invariant of Lagrangian fibrations

Thm (Wieneck): In a family of Lagrangian fibrations the polarization type of the fibres is constant.

For fibrations on $Hilb^2 K3$ the polarization is *principal*

$$(d_1,d_2)=(1,1).$$

For fibrations on $K_2(A)$ the polarization is of type

$$(d_1, d_2) = (1, 3).$$

Thm (Markman): If X is a general deformation of $\mathrm{Hilb}^2 K3$ admitting a Lagrangian fibration then it is birational to a *Tate-Shafarevich twist* of Beauville-Mukai system.

Finiteness

Thm (S-): Fixing $d_1 | \dots | d_n$, there are finitely many Lagrangian fibrations up to deformation with

- polarization type (d_1, \ldots, d_n) ,
- a global section,
- maximally varying fibres,
- semistable singular fibres in codimension one.

Rmk:

- we want to bound the polarization type,
- one expects finite Tate-Shafarevich twists up to deformation,
- van Geemen-Voisin and Bakker proved that Lagrangian fibrations are maximally varying or isotrivial,
- singular fibres are "almost" semistable after deforming.

Restrictions on polarization type

Thm (S-): Let $X \to \mathbb{P}^2$ be a Lagrangian fibration (with X smooth!) and let $Y \in \mathrm{H}^2(X,\mathbb{Z})$ restrict to a polarization of type (d_1,d_2) on each smooth fibre. Then d_1d_2 can take only the following twenty values up to a square:

Example: Polarization types (1,6) and (1,11) are *not* possible.

Rmk: In higher dimensions, the overall degree $d_1 \cdots d_n$ of the fibres can take only finitely many values up to an n^{th} power.

Restrictions on polarization type

Proof: Let L be the pullback of a hyperplane from \mathbb{P}^2 . Then

$$\left(\int_X Y^2 L^2\right) \left(\int_X c_2(\sigma\bar{\sigma})\right)^2 = \left(\int_X (\sigma\bar{\sigma})^2\right) \left(\int_X c_2 Y L\right)^2$$

where $\int_X Y^2 L^2 = 2! d_1 d_2$ and Hitchin-S- formula gives

$$\frac{\left(\int_X c_2(\sigma\bar{\sigma})\right)^2}{\int_X (\sigma\bar{\sigma})^2} = \frac{24^2(2!)^2}{2^2} \sqrt{\hat{A}}[X].$$

Thus

$$1152d_1d_2\sqrt{\hat{A}}[X] = \left(\int_X c_2YL\right)^2$$
 is a square.

Guan showed that $\sqrt{\hat{A}}[X]$ takes finitely many values.

Summary of examples in four dimensions

Example	Polarization type
Beauville-Mukai system	(1, 1)
Hilb ² S of elliptic K3 S	(1,1)
Arbarello-Saccà-Ferretti system	(1, 1)
Isotrivial on $\mathrm{Hilb}^2S/\mathbb{Z}_2^{\oplus 2}$	(1,1)
Markushevich-Tikhomirov system	(1, 2)
Isotrivial on $\mathrm{Hilb}^2S/\mathbb{Z}_2$	(1, 2)
Debarre system	(1, 3)
Isotrivial on $K_2(A)$	(1, 3)